May’s Cold Spring Harbor Protocols Features Plant Gene Expression Methods, Xenopus Imaging
05/03/2010
COLD SPRING HARBOR, N.Y. (Mon., May 3, 2010) – The generation of transgenic plants can be a lengthy and difficult process. Transient expression assays have been developed as faster and more convenient alternatives for investigating gene function. These assays often take advantage of the ability of Agrobacterium to transfer foreign DNA into plant cells with intact cell walls. Agrobacterium-mediated transformation is, however, inefficient and shows great variability. In the May issue of Cold Spring Harbor Protocols (www.cshprotocols.org/TOCs/toc5_10.dtl), Andreas Nebenf�hr and colleagues from the University of Tennessee (www.bio.utk.edu/cellbiol/) present FAST Technique for Agrobacterium-Mediated Transient Gene Expression in Seedlings of Arabidopsis and Other Plant Species, a quick, efficient and economical assay for gene function in intact plants. The technique involves cocultivation of young plant seedlings and Agrobacterium in the presence of Silwet-77. The Silwet-77 facilitates transformation, thus replacing a wounding or device-dependent vacuum step. As one of May's featured articles, it is freely available on the journal's website (cshprotocols.cshlp.org/cgi/content/full/2010/5/pdb.prot5428). The large size and external development of the frog Xenopus laevis make it an ideal system for in vivo imaging of dynamic cellular activity. Xenopus embryos are amenable to simple genetic manipulation techniques including knockdowns and misexpression, as well as transgenesis. The ease of collecting large numbers of embryos and the larger size of individual cells within an embryo as compared with other vertebrate model systems provides an excellent platform for the observation of cellular behavior and subcellular processes. In the May issue of Cold Spring Harbor Protocols (www.cshprotocols.org/TOCs/toc5_10.dtl), John Wallingford and colleagues from the University of Texas (www.bio.utexas.edu/faculty/wallingford/) provide a suite of articles detailing live imaging of Xenopus laevis at low magnification, confocal imaging of fixed tissues, and in one of May's featured articles, High-Magnification In Vivo Imaging of Xenopus Embryos for Cell and Developmental Biology. This protocol describes methods for labeling and high-magnification time-lapse imaging by confocal microscopy and is freely available on the journal's website (cshprotocols.cshlp.org/cgi/content/full/2010/5/pdb.prot5427 ). # # # About Cold Spring Harbor Protocols: Cold Spring Harbor Protocols (www.cshprotocols.org) is a monthly peer-reviewed journal of methods used in a wide range of biology laboratories. It is structured to be highly interactive, with each protocol cross-linked to related methods, descriptive information panels, and illustrative material to maximize the total information available to investigators. Each protocol is clearly presented and designed for easy use at the bench—complete with reagents, equipment, and recipe lists. Life science researchers can access the entire collection via institutional site licenses, and can add their suggestions and comments to further refine the techniques. About Cold Spring Harbor Laboratory Press: Cold Spring Harbor Laboratory Press is an internationally renowned publisher of books, journals, and electronic media, located on Long Island, New York. Since 1933, it has furthered the advance and spread of scientific knowledge in all areas of genetics and molecular biology, including cancer biology, plant science, bioinformatics, and neurobiology. It is a division of Cold Spring Harbor Laboratory, an innovator in life science research and the education of scientists, students, and the public. For more information, visit www.cshlpress.com. MEDIA CONTACTS: For content and submission information: David Crotty ([email protected]; 516-422-4007), Executive Editor, Cold Spring Harbor Protocols For access, subscription, and free trial information: Stephanie Novara ([email protected]; 516-422-4159), Journals Marketing Manager, CSHL Press
|