A	evolutionary principles, 55–56
A-1155463, 18	evolutionary-relevant animal models, 57-58
A-1331852, 18	Mutation Accumulation Theory, 55
A4LI. See Alliance for Longevity Initiatives	AICAR, 110
$A\beta_{1-42}, 41$	Akkermansia, 86
ABCs. See Age-associated B cells	α-Klotho, 20, 25
"Active grandparent" hypothesis, 64	Alliance for Longevity Initiatives (A4LI), 216
Activin A, 19	ALS. See Amyotrophic lateral sclerosis
Acetyl CoA, 99	Alzheimer's disease (AD)
Acylcarnitines, 110	diagnosis
AD neuropathologic change (ADNC), 129–130	clinical, 130–131
AD. See Alzheimer's disease	pathologic, 131
Adenine diphosphate ribose (ADPR), 31	psychometric tests, 130
Adenine nucleotide transporter (ANT), 98, 101, 104	early-onset familial forms, 133
Adenosine triphosphate (ATP), 30, 98–99, 104, 108, 110,	lifestyle-based approaches, 138
215	progressive, 131
ADIPOQ gene, 165	resistance and resilience
ADNC. See AD neuropathologic change; Alzheimer's	caveats of current definitions, 132-133
disease neuropathologic change	defined, 131–132
ADP ribosyl-cyclases	genetic mediators, 133–134
CD38, 31	leveraging approved therapeutics to target
CD73, 31	pathways, 137–138
CD157, 31	leveraging modifiable risk factors, 138–139
ADPR. See Adenine diphosphate ribose	mechanisms, 133
Adult immunization campaigns, 191–192	modifiable mediators, 134–136
AG. See Applied genetics	targeting underlying pathology, 136–137
Age-associated B cells (ABCs), 80	symptoms
Aging	memory loss, 130
biology, 97–98	sleep disturbances, 138
biomedical research, 55	treatments
evolutionary biodemography, 56–57, 119	disease-modifying, 136
humans in evolutionarily relevant environments,	effects of neuron dysfunction and loss, 137
63–64	therapeutic approaches, 136
metabolic rate theory, 167	Alzheimer's disease neuropathologic change (ADNC),
negative effects, 55	129, 131–139
pillars, 13	Amboseli Baboon Research Project, 60
pleiotropic gene theory, 124	Ambra1, 101
primates, 58–61	Amino acid tryptophan (Trp), 33-34
risk of death, 120	AMPK, 101, 104, 110, 167
Taming Aging with Metformin (TAME), 170	Amyloid precursor protein (APP), 102, 131, 133
Aging research	Amyloid β (Aβ) plaques, 102, 129, 131, 137
Amboseli Baboon Research Project, 60	Amyotrophic lateral sclerosis (ALS), 214
comparative primate aging models, 61–63	ANAVEX2-73, 104
cryptocurrency as a crowdfunding mechanism, 212–214	Anemia, 61, 88
Developmental Theory of Aging, 56	ANT. See Adenine nucleotide transporter
Disposable Soma theory, 56	Antagonistic pleiotropy, 16, 55–56, 168–169
equity crowdfunding, 210–212	Anti-DPP4 antibodies, 19

Anti-IGF1R monoclonal antibodies, 169	Caregiving
APOC1 gene, 166	demand and cost, 185
APOC-3 gene, 165, 169	models and solutions, 189
APOE gene, 134, 166–167, 179, 181	older family members, 189
APP. See Amyloid precursor protein	responsibilities, 185
Applied genetics (AG), 177, 179	support for those who care for older adults, 191
Aspirin in reducing events in the elderly (ASPREE), 88	Carnitine palmitoyltransferase I (CPTI), 103
ASPREE. See Aspirin in reducing events in the elderly	Carotenoid astaxanthin, 104
Astaxanthin (AX), 103–104	CART. See Chimeric antigen receptor T
ATF4, 84–85, 100	CCFs. See Cytoplasmic chromatin fragments
ATF5, 100	CD4 ⁺ T cells, 77–78, 80–81, 84
ATP. See Adenosine triphosphate	CD9 receptor, 19
Atherosclerotic disease, 88	CD11c ⁺ , 80
Autophagy, 29, 31, 38, 42, 74, 77, 84, 101, 109–110, 138	CD21, 80
AX. See Astaxanthin	CD23, 80
AA. See Astaxantinii	
	CD28, 78, 80 CD38, 31, 35, 36
В	CD38, 31, 35–36
B1a cells, 86	CD73, 31
B2M, 19	CD157, 31
BACE1, 41	CDK1/cycB inhibitor, 15
BALB/c, 102	CDK2/cycE, 14–15
Barnesiellaceae, 86	CDK4/cycD, 14–15
Bcl-2, 18, 41, 101	Cell-cycle arrest, 13, 15
	Cell reprogramming, 227
Bec-1 gene, 109	Cellular senescence
β-carotene, 103	associated secretory phenotype, 16-17
β-galactosidase, 15	clinical trials, 21–22
β-oxidation, 30, 98–99	future perspectives, 24
Bifidobacterium species, 86, 138	hallmarks, 15–16
Bioceuticals, 229	human studies, 19–20
Biogerontology, 225, 232	induction of, 14–15
Biological time bombs, 3	Ceriodaphnia, 102
Biomedicine, 233	CETP. See Cholesteryl ester transfer protein
Biotechnology projects, 209	CGAS-STING, 16, 42, 47
Bitcoins, 208, 212, 214	Chimeric antigen receptor T (CART), 19
Blautia, 87	CHO oxidation, 103
Blockchain technology, 207–208, 212, 214–215, 217	Cholesteryl ester transfer protein (CETP), 165, 169
Bone calcification, 124	CHOP, 100
Brain aging, 99, 130, 135, 139	Christensenellaceae, 86
Brain health campaigns, 191	Chronic inflammation, 17, 46, 62–64, 71, 74–76, 86
BRCA gene, 166, 183	Chronic neuroinflammation, 137
Butyrate, 86	Chronic obstructive pulmonary disease (COPD), 20
Butyricimonas, 86	150, 162, 196
Butyrivibrio, 86	Chrysemys picta, 122
	CL. See Cardiolipin
	Clostridioides difficile infection, 87
С	Clostridium species, 86
C57Bl/6N, 38–39, 102	Cognitive reserve, 131, 134–135
cADPR. See Cyclic ADP ribose	
•	COPD. See Chronic obstructive pulmonary disease
Caenorhabditis elegans, 37, 39–41, 100, 120, 231	Coprococcus, 87
Caloric restriction, 38, 58, 135, 138, 227	Covid-19
Canakinumab Anti-Inflammatory Thrombosis	impacts, 190
Outcome Study (CANTOS) trial, 88	pandemic, 147, 149, 178
CANTOS. See Canakinumab Anti-Inflammatory	vaccines, 195–196, 198
Thrombosis Outcome Study trial	CPTI. See Carnitine palmitoyltransferase I
Cardiolipin (CL), 74, 104	Crowdfunding, of aging science

cryptocurrency, 212–214	t .
equity, 210–212	E2F, 14–15
"flexible funding" campaigns, 209	EA. See Ellagic acid
impact, 216	ECM. See Extracellular matrix
Jimmy Fund, 216	eIF2 α . See Eukaryotic initiation factor 2α
platforms	Elamipretide, 104–108
aging research, 210	Electron transport system (ETS), 98–99
uses, 209–210	Ellagic acid (EA), 109
publishing, 215–216	Ellagitannins (ETs), 109
versus traditional funding, 208-209	Endoplasmic reticulum (ER), 84, 100
Crowdsourcing	Enterobacteriaceae, 86
catalyst for advocacy and increased public funding, 216–217	Equity crowdfunding, for aging research, 210–212
decentralized science, 214-215	ER. See Endoplasmic reticulum
impact, 216	Ercc1, 76, 83
Cryptocurrency	Escherichia coli, 121
crowdfunding mechanism for aging science, 212-214	Ethereum, 208, 212, 214
global adoption, 212	ETS. See Electron transport system
PulseChain, 214	ETs. See Ellagitannins
CSA. See CS complementation group A	Eubacterium, 87
CSB. See CS complementation group B	Eukaryotic cells, 98
CS complementation group A (CSA), 37, 40	Eukaryotic initiation factor 2α (eIF2 α), 84
CS complementation group B (CSB), 37, 40	Evolutionary medicine, 56, 63
Curcumin, 18, 104, 110	Exceptional longevity
CureDAO, 215	age-delaying drugs, 168–170
Cyclic ADP ribose (cADPR), 31	genetics, 164–167
Cytochrome c, 101	heritability, 163–164
Cytokines, 75, 78, 83	
Cytoplasmic chromatin fragments (CCFs), 16	protective genotypes, 165
Cytopiasinic cinomatin magnents (CC13), 10	rationale for studying, 161–163
	Extracellular matrix (ECM), 17
D	
Damage-associated molecular patterns (DAMPs), 47, 74–75, 101	F
DAMPs. See Damage-associated molecular patterns	FADH ₂ , 98
DAOs. See Decentralized autonomous organizations	Faecalibacterium species, 86–87
DASH. See Dietary approaches to stop hypertension	Familial longevity, 164–168
Data Protection Act (UK), 215	FDI. See First dorsal interosseous
Dct-1 gene, 40, 109	Fecal microbiota transplantation
Decade of Healthy Ageing, 193	(FMT), 87
Decentralized autonomous organizations (DAOs), 214	Financial wellness, 193
DeSci, 215	First dorsal interosseous (FDI), 108
Developmental Theory of Aging, 56	FMT. See Fecal microbiota transplantation
Diabetes mellitus type 2 (T2DM), 161, 164	Focused research organization (FRO), 198
	FOXO3, 161, 166, 179, 181–182
Diabetes Prevention Program (DPP), 164 Dietary approaches to stop hypertension (DASH), 138	FOXO4-p53, 18
	1
Dietary restriction (DR), 124, 138	FRO. See Focused research organization
Diseases, age-related, 7–8, 57, 61, 97, 147, 164–165,	FUNDC1, 101
171, 226	Funding channels of geroscience
Disposable Soma theory, 56, 124	foundational foundations, 223
Dorea, 87	funders, 222–224
"Dorian Gray" slowdown, 153	investing in discoveries, 226–227
DPP. See Diabetes Prevention Program	investing in people, 224–226
DR. See Dietary restriction	new philanthropists, 223–224
Drosophila, 41, 102	surge of investment, 224
Dysbiosis, age-related, 46, 71, 74, 86–87	tech billionaires, 223

ն	High-density lipoprotein (HDL), 46, 161, 165, 169
G ₁ , 14	HIPAA. See Health Insurance Portability and
G_1/S , 14–15	Accountability Act 1996
G ₂ /MDNA, 15	HLE. See Life expectancy, healthy life expectancy
GCN2. See General control nonderepressible 2	HOPE trial, 101
General control nonderepressible 2 (GCN2), 84–85	HPA. See Hypothalamic-pituitary-adrenal
Generic recommendations (GRs). See Retirement age,	HSAs. See Health Savings Accounts
generic recommendations	HSCs. See Hematopoietic stem cells
Genome-wide association study (GWAS), 134, 165–167	HSR. See Heat shock response
Geroprotectors, 9, 209, 236	Human inflammaging, 63
GeroScience Interest Group (GSIG), 223, 233	Human primary cells, subculturing, 13
GH. See Growth hormone	Human senescence, 120–123
GHR. See GH receptor	Hutchinson-Gilford progeria syndrome, 77, 162
GH receptor (GHR), 167, 169	<i>Hydra</i> spp., 119, 121–122, 125
Glycoprotein nonmetastatic melanoma protein B	Hyperphosphorylated Tau (pTau), 41, 129, 131
(GPNMB), 19	Hypertension, 46, 61, 63, 103, 137–138, 163, 170
Gompertz slope, 122–123	Hypothalamic-pituitary-adrenal (HPA), 62
GPNMB. See Glycoprotein nonmetastatic melanoma	
protein B	
GPR78, 166	I
Great apes, 61–62	IFN. See Interferon
Growth hormone (GH), 102, 120, 167, 171	IGBP-3, 168
GRs. See Retirement age, generic recommendations	IGF-1. See Insulin-like growth factor 1
GSIG. See GeroScience Interest Group	IL. See Interleukin
GWAS. See Genome-wide association study	IMM. See Inner mitochondrial membrane
,	Immune dysregulation, age-associated, 78, 83
	Immune responses, dysregulation, 78
Н	Impact index fund, 212
Health gains, 156	Impaired oxidative phosphorylation, 100
Health Insurance Portability and Accountability Act	Inflammaging
1996 (HIPAA), 215	age-related dysbiosis, 86–87
Health Savings Accounts (HSAs), 191	immunosenescence, 78–84
Health span	integrated stress response, 84-86
assessments, 180	pathology and accelerated aging
concept, 232	attenuating chronic inflammation, 76–77
current and future generations, 177	inducing inflammation, 75-76
extension of, 9, 17, 87, 104, 163	underlying mechanisms, 72–75
longevity, 77	Inflammation
meaning, 9, 232	attenuation of, 76–77
Healthy aging	insulin resistance induced by, 74
age-related pathologies, 55	mitochondrial RNA/RIG-I-dependent, 39
biomarkers, 86	pathology and accelerated aging, 75-77
importance, 190	"pillars" of aging, 72
investment, 191–192	risk factor for chronic diseases, 87-89
mitochondrial-targeted interventions, 111	suppression, 75
promotion, 29, 64, 97, 138	Inner mitochondrial membrane (IMM), 83, 102, 104
role for spermidine in, 109	Insulin-like growth factor 1 (IGF-1), 102, 161, 167–168
social gains, 153	Integrated stress response (ISR), 71–72, 74, 85–86
strategies, 193	Interferon (IFN)
workplace, 191	IFN-I, 16
Heat shock response (HSR), 74, 84	IFN- γ , 78
HEL. See Hexanoyl-lysine adduct	Interleukin (IL)
Hematopoiesis, 77	Interleukin 1 (IL-1), 47, 76
Hematopoietic stem cells (HSCs), 77	Interleukin 1α (IL- 1α), $19-20$
HEXA gene, 166	Interleukin 1β (IL-1β), 86
Hexanoyl-lysine adduct (HEL), 103	Interleukin 6 (IL-6), 19-20, 47, 76-77, 83-84, 86

Interleukin 8 (IL-8), 19	species-specific, 2–3, 124
Interleukin 17 (IL-17), 17, 77-78, 80, 84	Limits to life, mechanisms setting, 123–126
Interleukin 21 (IL-21), 17	Liquid chromatography (LC), 35, 101
Interleukin 23 (IL-23), 17	LLFS. See Long Life Family Study
Intestinal bowel disease, 72	Long Life Family Study (LLFS), 163, 165, 168
Intrinsic dysregulation, age-related, 71–72	Longevity. See also Exceptional longevity
IR. See ischemia reperfusion	assessing performance, 155–157
Ischemia reperfusion (IR), 105–107	economic tools to evaluate, 148
ISR. See Integrated stress response	evaluating gains to health, 148–150
isk. See integrated sitess response	
	evolutionary basis, 121
J	familial, 164, 167
	humanity's quest, 7
[147, 104	hyperpersonal longevity assessment tool, 179
JAK/STAT inhibitors, 16	international gains, 153–155
JAK/STAT3 inhibitors, 19	mathematical modeling, 121
Jimmy Fund, 216–217	new epidemiological transition, 152–153
	new financial landscape, 185–188
V	rationale for studying, 161–163
K	role of SIRT6, 168
Kynurenine pathway, 31–34	targeting biological age, 150-152
	value of statistical life (VSL) framework, 148, 155
_	Longevity Genes Project (LGP), 163, 167
L	Low-density lipoprotein (LDL), 46
LabDAO, 215	7 1 1
Lactobacterium species, 138	
Lamin B1, 20	M
LC. See Liquid chromatography	Mammalian target of rapamycin (mTOR), 16, 19, 84,
LDL. See Low-density lipoprotein	104, 167, 169
LEAF. See Lifespan Extension Advocacy Foundation	Matrix metalloproteinases (MMPs), 20
LGP. See Longevity Genes Project	mCAT. See Mitochondrial catalase
Life expectancy	MCI. See Mild cognitive impairment
compressing morbidity, 148	Mcp1, 76
global, 186	MDM2 inhibitor, 20
healthy life expectancy (HLE), 150	MDPs. See Mitochondrial-derived peptides
	Mediterranean-DASH intervention for
levels, 150	neurodegenerative delay (MIND), 138
new epidemiological transition and, 152–153	Mendelian genetics, 161, 166
rise in, 149	e e e e e e e e e e e e e e e e e e e
survival curve, 154	Metformin, 77, 110, 164, 170, 203, 228, 236
worldwide trend in, 195	Microbiomes, 71–72, 74, 86–87, 109, 138
Life extension	Mild cognitive impairment (MCI), 64, 138
arguments for and against, 5–7	MIND. See Mediterranean-DASH intervention for
funding for research	neurodegenerative delay
ARPA-Aging model, 199	MiR146a, 77
collaborations, 198	Mitochondria
failure, 203	calcium homeostasis and aging, 100
game-changing technologies, 197-198	double-membrane organelles, 97
limitations, 203–204	outer mitochondrial membrane (OMM), 101
long-term, 201–203	quality control in aging, 100-101, 108-110
"moonshot" funding models, 196-197	redox stress in aging muscle, 108
nongovernmental, 200–201	role in aging biology, 97–98
supportive/preliminary data, 198–200	Mitochondrial bioenergetics, 74, 98–99
Life spans	Mitochondrial catalase (mCAT), 100
determination, 1	Mitochondrial-derived peptides (MDPs), 101, 110, 170
human, 3–5	Mitochondrial dysfunction, 13–14, 25, 35–39, 42, 46, 76,
Kirkwood's disposable soma theory, 124	99–100, 138, 196
	Mitochondrial metabolites, in aging, 99–100
origin, 1–2	wittoenondriai inclabolites, ili aging, 33–100

Mitochondrial oxidative stress, 101 Mitochondrial permeability transition pore (mPTP), 100	Longevity Assurance Genes (LAG) initiative, 231 request for applications (RFAs), 231
Mitochondrial redox biology, 99	development of geroscience, role in, 231-236
Mitochondrial targeted therapies	Natural killer T (NKT) cells, 78
astaxanthin (AX), 103-104	Negative aging, 57
biogenesis, 110	NEMO, 76
elamipretide, 104–108	Neurofibrillary tangles (NFTs), 41, 129, 131
mitochondrial quality control, 108-110	Neuroscience, 202, 233–234
mitoquinone (MitoQ), 102	NF-κB inhibitors, 16, 19, 47, 71, 75–77, 85–86, 88
MitoTEMPO, 102–103	NFT. See Nonfungible cryptocurrency token
Skq1, 102	NFTs. See Neurofibrillary tangles
Mitochondrial unfolded protein response (mUPR), 35,	NHANES III. See National Health and Nutrition
39, 42, 100	Examination Survey
Mitophagy, 29, 31, 35, 37–42, 74, 89, 100–101, 108–110	NIA. See National Institute on Aging
Mitoquinone (MitoQ), 102	Natural selection, 3, 16, 55-56, 121, 124, 126
MitoSENS Mitochondrial Repair Project, 215	Nicotinamide adenine dinucleotide (NAD). See NAD+
MitoTEMPO treatment, 102–103	and NADH
MMPs. See Matrix metalloproteinases	Nicotinamide adenine dinucleotide phosphate (NADP), 31
Mono-ADP-ribosylase enzyme, 168	Nicotinamide mononucleotide (NMN), 30–34, 36–42,
Mortality, age-specific, 121	46, 100, 108, 215
Mortality rate, 6, 56, 120–123, 152–153, 158	Nicotinamide riboside (NR), 30-34, 38-42, 46, 100
MOTS-c, 101, 110	Nicotinamide riboside kinases (NRK1-2), 32–33
mPTP. See Mitochondrial permeability transition pore	Nicotinic acid adenine dinucleotide (NAAD), 34, 38–39
mTOR. See Mammalian target of rapamycin	Nicotinic acid mononucleotide (NAMN), 33–34
mUPR. See Mitochondrial unfolded protein response	Nicotinic acid phosphoribosyltransferase (NaPRT), 34
Mutation Accumulation Theory, 55	NKT cells. See Natural killer T cells
<i>''</i>	NLRP3, 42, 74, 88, 101
N	N-methyl-D-aspartate (NMDA) receptor, 137
	NMDA receptor. See N-methyl-D-aspartate receptor
NA adenine dinucleotide phosphate (NAADP), 31	NMN. See Nicotinamide mononucleotide
NAAD. See Nicotinic acid adenine dinucleotide	NMNadenylyl transferases 1-3 (NMNAT1-3), 32-34, 37
NAADP. See NA adenine dinucleotide phosphate	NMNAT1-3. See NMNadenylyl transferases 1-3
NAD ⁺	Nonfungible cryptocurrency token (NFT), 214
augmentation benefits, 38–42	Nonsteroidal antiinflammatory drugs (NSAIDs), 138
biosynthetic pathways, 32	NOTCH receptor, 19
changes in age-associated diseases, 37–38	NOVOS, 215
changes during normal aging, 34–36	NR. See Nicotinamide riboside
changes in pathological aging, 37	NRF2, 101
consuming enzymes, 30–31	NRK1–2. See Nicotinamide riboside kinases
consuming proteins, 31	NSAIDs. See Nonsteroidal antiinflammatory drugs
supplementation, 42–46	Nutraceuticals, 103, 215, 229
NAD ⁺ synthase (NADS), 33–34	
NADH, 29–31, 33–35, 98–100	_
NADP. See Nicotinamide adenine dinucleotide phosphate	0
NADPH, 99	Odoribacter, 86
NADS. See NAD ⁺ synthase	Olaparib, 40
NAMN. See Nicotinic acid mononucleotide	OMM. See Mitochondria, outer mitochondrial membrane
NAMPT, 33, 36–37, 39, 42	Open Longevity, 215
Naproxen, 87	OpenCures, 215
NaPRT. See Nicotinic acid phosphoribosyltransferase	Oscillospira, 86
National Cancer Act, 216	Oxidative phosphorylation, 98–100
National Health and Nutrition Examination Survey	
(NHANES III), 167	P
National Institute on Aging (NIA)	
early days, 231–234	P7C3, 42
Interventions Testing Program (ITP), 231	P16 ^{INK4a} , 14–20, 24

P21 ^{C1P1/WAF1} , 14 –20, 24	long-term care, 180–181
P38-MAPK inhibitors, 16, 19	portfolio risk, 181
P50, 75–76	product mix, 181
P53, 14–16, 18–19	working and learning beyond, 188-189
P65, 75	Return-on-investment (ROI), 201-202, 208
PAPR-1, 165	Rheumatoid arthritis, 72, 77-78, 80, 88
PARP. See Poly ADP-ribosylation	ROI. See Return-on-investment
Pathologies, age-related, 55	Roseburia, 87
Pattern-recognition receptors (PRRs), 47	
PD. See Parkinson's disease	ę.
PERK. See PKR-like ER kinase	S
Pink-1 gene, 109	SA-βgal, 15, 19–20, 24
PKR. See Protein kinase R	Salvage pathway, 31–34
PKR-like ER kinase (PERK), 85	SAMP8, 99, 104
Placebo-controlled clinical trial, 170, 210, 236	Sarcoplasmic reticulum, 100
Podospora, 102	SARM1, 31
Poly ADP-ribosylation (PARP), 31, 35, 37, 39-40	SARS-CoV-2 S-antigen, 16
Polygenic risk scores (PRS), 134, 165	SASP. See Senescence-associated secretory phenotype
PON1, 165	SCAPs. See Senescent cell antiapoptotic pathways
Porphyromonas gingivalis, 86	Senescence-associated secretory phenotype (SASP),
Parkinson's disease (PD), 14, 29, 100, 214	16–20, 25, 74, 76, 80, 83
Positive-wealth span, 182	Senescent cell antiapoptotic pathways (SCAPs), 18–19
Preiss-Handler pathway, 30-34	Senolytics, 17–19, 20, 24–25, 227, 236
Presenilin 1 gene, 133	Ser202, 41
Presenilin 2 gene, 133	Shigella flexneri, 86
Proinflammatory mediators, 71, 77, 84	SHLP2-3, 110
PROTACs. See Proteolysis-targeting chimeras	SHLPs1-6, 110
Protein kinase R (PKR), 85	Single-nucleotide polymorphisms (SNPs), 165–167
Proteolysis-targeting chimeras (PROTACs), 18–19	Single-nucleotide variants (SNVs), 125, 165
PRRs. See Pattern-recognition receptors	SIR2, 30
PRS. See Polygenic risk scores	SIRTs. See Sirtuins
Psychometric tests, 130	Sirtuins (SIRTs), 31
pTau. See Hyperphosphorylated Tau	SIRT1, 35, 37, 39, 40
PVLR2 gene, 166	SIRT3, 36
	SIRT6, 168
	Skn-1 gene, 109
Q	SkQ1 treatment, for life span extension, 102
QALY. See Quality-adjusted life years	SLC. See Solute carrier
Quality-adjusted life years (QALY), 149	Sleep disturbances, 138
Quality of life, 9, 97, 138, 149, 181, 193, 232, 235–236	Slowdown in aging, value of, 154, 158, 196
Quantity of life, 149, 235	SNPs. See Single-nucleotide polymorphisms
Quercetin (Q), 18, 20	SNVs. See Single-nucleotide variants
	Social competition, in primates, 60
	Social safety nets, 183
R	Social security, 179–180, 183
Rapamycin, 76–77	SOD2. See Superoxide dismutase
Rb. See Retinoblastoma protein	Solute carrier (SLC)
RelA, 76	SLC7A5, 33
Retinoblastoma protein (Rb), 14-15	SLC25A51, 33
Retirement age	SLC25A52, 33
generic recommendations (GRs)	SLC36A4, 33
case study, 180, 182	Somatic mutations, 125–126
generic advisor recommendation, 181-182	Spermidine, 101, 109
goal of financial planning, 181	<i>Sqst-1</i> gene, 109
guidance on when to draw social security, 179-180	SR12343, 76
limitations, 182–183	SRT1720, 40

SS peptides. See Szeto-Schiller peptides Unfolded protein response (UPR), 35, 74, 84, 100 Stem cell aging, 232 uPAR. See Urokinase-type plasminogen activator Stimulator of interferon gene (STING) pathways, 101 receptor STING. See Stimulator of interferon gene pathways UPR. See Unfolded protein response SToMP-AD, 20 Urokinase-type plasminogen activator receptor Streptococcus, 86 (uPAR), 19 Superoxide dismutase (SOD2), 99 Urolithin A (UA), 41, 101, 109-110 Szeto-Schiller peptides, 104 USP42 gene, 166 T ٧ T2DM. See Diabetes mellitus type 2 Vps-34 gene, 109 TAFs. See Telomere-associated DDR foci TAME. See Taming Aging with Metformin Taming Aging with Metformin (TAME), 170, 198, 203, W 228, 236 War on Cancer, 216 Targeting aging, 147, 150-152, 155, 157, 196, 227 Wealth management Tay-Sachs disease, 166 age of longevity, 185-188 TBI. See Traumatic brain injury challenges, 185 TCA. See Tricarboxylic acid cycle Covid-19, impacts and lessons, 190 Telomere-associated DDR foci (TAFs), 15 efficient, equal caregiving, 189 TGN. See Translational Geroscience Network financial wellness, 186, 188-189 THC. See Transhuman Coin token transactions individual, 192-193 Thr181, 41 labor market, 187 Thr205, 41 "Life Plan" tool, 192 Thr231, 41 maximization of financial security, advances in Thyroid-stimulating hormone (TSH), 167 geroscience, 188 Thyroid-stimulating hormone receptor (TSHR), 167 relation with health, 188 TIFs. See Telomere-induced DNA damage foci role of financial services industry TLR. See Toll-like receptor "financial gerontology" training, 192 TMTC2 gene, 166 financial tools to pay for longer Toll-like receptor (TLR) lives, 192 TLR 7, 80 needs and opportunities of modern TLR 9, 80 longevity, 192 TOMM40 gene, 166 strategies TPP+. See Triphenylphosphonium ion adult immunization, health screenings, and Transhuman Coin token (THC) transactions, telehealth options, 191-192 212, 214 age-friendly workplaces, 189 Translational Geroscience Network (TGN), 23-24, 226 benefits for employee caregivers, 189-190 Transporter connexin 43 (Cx43), 31 different kinds of family caregiving, 191 Traumatic brain injury (TBI), 136 health savings accounts (HSAs), 191 Tricaprilin, 104 prioritizing healthy aging, 191 Tricarboxylic acid cycle (TCA), 98-100 saving and investing early, 190 Trimethylamine, 87 tools to plan, save, and invest for a longer life, 189 Triphenylphosphonium ion (TPP⁺), 102–103 working and learning beyond retirement age, TSH. See Thyroid-stimulating hormone 188-189 TSHR. See Thyroid-stimulating hormone receptor Weel inhibitor, 15 Tumor necrosis factor-α, 47, 74, 76–78, 83–84, 87–88 Werner syndrome (WS), 37, 162 Turritopsis nutricula, 122 Willingness to pay (WTP), 148-149, 152-154 Wolverine (reversing aging), 151-153 U Working age, definition, 187 UA. See Urolithin A WS. See Werner syndrome WTP. See Willingness to pay UBX101, 20