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Our understanding of how the first mammalian cell lineages arise has been shaped largely by
studies of the preimplantation mouse embryo. Painstaking work over many decades has
begun to reveal how a single totipotent cell is transformed into a multilayered structure
representing the foundations of the body plan. Here, we review how the first lineage decision
is initiated by epigenetic regulation but consolidated by the integration of morphological
features and transcription factor activity. The establishment of pluripotent and multipotent
stem cell lines has enabled deeper analysis of molecular and epigenetic regulation of cell fate
decisions. The capability to assemble these stem cells into artificial embryos is an exciting
new avenue of research that offers a long-awaited window into cell fate specification in the
human embryo. Together, these approaches are poised to profoundly increase our under-
standing of how the first lineage decisions are made during mammalian embryonic devel-

opment.

he preimplantation mouse embryo is an ex-
Tceptional model system for studying the de-
velopment of the first mammalian cell lineages.
Beginning from the single-cell fertilized zygote
stage, the mouse embryo can progress through
the entire preimplantation stage in vitro without
the requirement for maternal input (Whitten
and Biggers 1968). Over a period of 4.5 days,
the embryo will undergo cleavage divisions with-
out significant growth, activate transcription of
the embryonic genome, compact to form a mor-
ula, and finally establish the first internal cavity
to generate a blastocyst ready for implantation
into the uterus (Fig. 1; White et al. 2018). During
this time, the cells of the embryo gradually differ-
entiate from the totipotent zygote into three sep-
arate lineages. The first two lineages to emerge

are the extraembryonic trophectoderm (TE),
which will give rise to the placenta and the inner
cell mass (ICM). The ICM subsequently differ-
entiates into two lineages, the pluripotent epi-
blast (EPI), which will give rise to all germ layers
of the embryo and the primitive endoderm
(PrE), which forms the extraembryonic mem-
branes (Cockburn and Rossant 2010; White
et al. 2018). Therefore, at the time of implanta-
tion, the blastocyst resembles a hollow multilay-
ered ball consisting of a layer of TE cells that form
the outer surface with an inner core of EPI cells at
one end, separated from an internal cavity by a
layer of PrE cells (Fig. 1). A distinct type of stem
cell can be derived from each of these lineages:
trophoblast stem cells (TSCs) from the TE (Ta-
naka et al. 1998), extraembryonic endoderm
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(XEN) stem cells from the PrE (Kunath et al.
2005), and embryonic stem cells (ESCs) from
the EPI or earlier stages of the ICM (Evans and
Kaufman 1981; Martin 1981).

The accessibility of the preimplantation
mouse embryo combined with its amenability
to experimental manipulation has enabled sig-
nificant progress in understanding how these
first cell differentiation events occur. However,
although the key molecular differences between
the first three lineages have been known for
many years (Whitten and Biggers 1968; Pal-
mieri et al. 1994; Russ et al. 2000; Avilion et al.
2003; Mitsui et al. 2003; Niwa et al. 2005;
Strumpf et al. 2005; Ralston et al. 2010), how
these differences are first established remains
the topic of intense investigation. Here, we re-
view our current understanding of how the first
cell fate decisions are made during mammalian
development from research using preimplanta-
tion embryos and stem cell models.

THE FIRST LINEAGE DECISION

The first lineage decision cells must make during
mammalian development is the choice between
becoming the pluripotent ICM or undergoing
the first differentiation event to become TE. Sev-
eral transcription factors have been identified
that are critical for the correct specification of
TE and ICM fate. OCT4 is often regarded as a
master regulator of a network of pluripotency-
associated genes including SOX2 and NANOG;
however, OCT4 expression does not become re-
stricted to the ICM until after the start of blas-
tocyst formation (Palmieri et al. 1994; Dietrich
and Hiiragi 2007). Loss of OCT4 does not pre-
vent blastocyst formation, but the ICM of these
mutant embryos expresses TE markers instead
of maintaining pluripotency (Nichols et al.
1998).

The earliest transcription factors to display
lineage-specific expression patterns are CDX2
and SOX2 (Strumpf et al. 2005; Wicklow et al.
2014). Expression of SOX2 initiates at the four-
cell stage and starts to become restricted to the
inner cells at the 16-cell stage, whereas CDX2 is
first expressed at the eight-cell stage and is re-
stricted to the outer cells at the late 16-cell stage
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(White et al. 2016). By the blastocyst stage,
SOX2 expression is restricted to those cells of
the ICM that will give rise to the EPI, and it is
required to maintain these cells in an undiffer-
entiated state (Avilion et al. 2003).

CDX2 expression represses transcription
of the ICM-specific genes Oct4 and Nanog in
the outer cells and promotes TE maturation
(Strumpf et al. 2005; Huang et al. 2017a). Ex-
pression of the transcription factor GATA3 is
highly correlated with CDX2, and these proteins
work both together and independently to acti-
vate a TE-specific gene regulatory network
(Ralston et al. 2010). Once initial differences in
transcription factor expression have been estab-
lished, they are consolidated by the combined
actions of autoregulatory feedback loops that
drive Cdx2 and Oct4 expression (Chew et al.
2005), and reciprocal repression of Cdx2 by
OCT4, SOX2, and NANOG (Boyer et al. 2005;
Loh et al. 2006; Huang et al. 2017a).

The first lineages begin to spatially segregate
at the 16-cell stage when some cells are posi-
tioned inside the embryo to give rise to the
ICM. Traditionally it was assumed that spatially
“asymmetric” cell divisions allocated inner cells
by cleaving the parental cell perpendicular to the
surface of the embryo and directly pushing one
daughter cell inside as a result of the scission
(Johnson and Ziomek 1981a; Cockburn and
Rossant 2010). However, computational model-
ing suggests that differentially oriented cell divi-
sions alone are not sufficient to give rise to the
observed spatial segregation of inner and outer
cells (Krupinski et al. 2011; Holmes et al. 2017),
suggesting additional mechanisms are required.
Consistent with this, several studies had report-
ed that inner cells could be positioned through
cell internalization events (Plusa et al. 2005; Ya-
manaka et al. 2010; Anani et al. 2014; Watanabe
et al. 2014), and the more recent application of
quantitative live imaging revealed that most in-
ner cells are allocated through a process of apical
constriction (Samarage et al. 2015). Once inside
the embryo, the inner cells are completely en-
closed by cell-cell contacts and therefore lack
apical polarity. The outer cells retain a contact-
less apical membrane, allowing them to polarize,
and they are biased toward the TE lineage.
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Historically, this seemingly inextricable connec-
tion between cell fate, polarity, and position led
to proposals that the first lineage decision is
directed by cell position: the “inside-outside
model” (Tarkowski and Wrdblewska 1967), or
cell polarity: the “polarity model” (Fig. 2; John-
son and Ziomek 1981a,b). The inside-outside
model suggests that cells are exposed to different
microenvironments on the basis of their posi-
tion within the embryo, and this directs their
acquisition of TE or ICM identity. Support for
this model was provided by the demonstration
that repositioning cells within the embryo forces
them to adopt the fate appropriate for their
new position (Hillman et al. 1972; Kelly 1977;
Suwinska et al. 2008). However, the inside-

Inside—outside model

Cells adopt inner or
outer positions

Polarity model

outside model cannot explain the existence of
a small population of apolar outer cells that do
not become TE, but instead gradually internal-
ize and become ICM (Plusa et al. 2005; Anani
et al. 2014).

By contrast, the polarity model proposes
that cells that inherit the apical membrane do-
main during the eight- to 16-cell stage division
will become TE. Cells that do not inherit an
apical membrane domain will be apolar and
form the ICM. Whether a cell inherits the apical
membrane was thought to be determined by
the plane of cell division (Johnson and Ziomek
1981a). An “asymmetric” division in which the
plane of cleavage is parallel to the surface of
the embryo would generate one TE cell that

Fate is determined \\\ - _
by position ; ]CM

Differential inheritance of polarity domains determines cell fate

Apical domain
\
Symmetric division

Cleavage
plane

TE
Two polar outer cells ™

l'" Y - n
' Q ‘
v i ' f |
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Figure 2. The inside-outside and polarity models of the first lineage decision. According to the inside—outside
model, cells first adopt positions on the outside or inside of the embryo. The cells are then exposed to different
microenvironments on the basis of their position within the embryo, and this directs their differentiation toward
either trophectoderm (TE) or inner cell mass (ICM). The polarity model suggests that the differential inheritance
of polarity domains during cell division directs cells fate. A symmetric division in which the cleavage plane (red
dotted line) aligns with the radial axis of the embryo splits the apical membrane and generates two outer polar
cells that are fated to become TE. An asymmetric division in which the plane of cleavage is parallel to the surface
of the embryo generates one polar TE cell that inherits the apical membrane and one inner cell that inherits
predominantly basolateral membrane and is therefore apolar and fated to become ICM.
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inherited the entire apical membrane and was
therefore polarized and one ICM cell that only
inherited basolateral membrane and was there-
fore apolar. A symmetric division in which the
cleavage plane aligned with the radial axis of the
embryo would instead split the apical mem-
brane and generate two polar TE cells (Fig. 2).
The recent demonstrations that the apical do-
main is disassembled just prior to division (Zen-
ker et al. 2018) and that apolar cells can spon-
taneously polarize many hours after division
(Anani et al. 2014; Korotkevich et al. 2017; Zenker
et al. 2018) suggest that the polarity model also
does not fully explain the segregation of the first
two lineages. Although the inside—outside and
polarity models have long been presented as dis-
tinct ideas, recent work demonstrating how the
Hippo signaling pathway directs cell fate in the
embryo has largely reconciled these two models.

The Hippo signaling pathway regulates cell
fate in response to polarity and cell contact
asymmetry (Sasaki 2017; Saini and Yamanaka
2018). Activation of Hippo signaling leads to
phosphorylation of the YAP1 transcriptional
coactivator by the kinase LATS1/2. The phos-
phorylation of YAP1 regulates how it shuttles
between the nucleus and the cytoplasm (Sasaki
2017). In the outer cells of the embryo, unphos-
phorylated YAP1 translocates into the nucleus
and interacts with the TEAD4 transcription fac-
tor to promote expression of TE-specific genes
including Cdx2 and Gata3 (Nishioka et al. 2009;
Ralston et al. 2010) and repress expression of the
pluripotency-associated gene Sox2 (Wicklow
et al. 2014; Frum et al. 2018). In the inner cells,
phosphorylated YAP1 is excluded from the nu-
cleus, preventing induction of TE-specific gene
expression (Nishioka et al. 2009). The phos-
phorylation status of YAP1 is thought to be reg-
ulated by the balance between cell-cell adhesion
and cell polarity, which are in turn largely de-
termined by cell position. At the molecular level,
these properties are sensed by the cell through
the subcellular distribution of angiomotin
(AMOT). In the apolar inner cells, AMOT lo-
calizes to the adherens junctions enclosing the
cell. There, AMOT associates with a complex of
NF2, o~ and B-catenin, and E-cadherin and is
activated through phosphorylation by LATS1/2
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kinase (Nishioka et al. 2009; Cockburn et al.
2013; Hirate et al. 2013). Phosphorylation of
AMOT inhibits its F-actin binding activity and
promotes its interaction with LATS1/2 (Daietal.
2013; Hirate et al. 2013). Together, phosphorylat-
ed AMOT and LATS1/2 enhance the phosphor-
ylation and nuclear exclusion of YAPI, allowing
the expression of pluripotency-associated genes.

Conversely, in the polarized outer cells,
AMOT is sequestered away from the junctions
by the apical domain where it remains unphos-
phorylated and binds to cortical F-actin (Hirate
et al. 2013; Leung and Zernicka-Goetz 2013).
RHO kinase also acts to stabilize AMOT binding
to F-actin and inhibit the interaction between
AMOT and NF2 (Shi et al. 2017). As AMOT is
absent from the junctional complexes, Hippo
signaling remains inactive and unphosphory-
lated YAPI is retained in the nucleus to drive a
TE-specific gene expression program (Ralston
et al. 2010; Hirate et al. 2013; Sasaki 2017). In
this way, the Hippo signaling pathway integrates
information about a cell’s position and polarity
to direct its fate.

However, the Hippo signaling pathway is
not the sole regulator of TE-associated gene ex-
pression, but instead it acts in parallel with
Notch signaling. Activation of the Notch path-
way causes translocation of the intracellular do-
main of the Notch receptor (NICD) into the
nucleus where it binds to the transcription fac-
tor RBP]J to activate gene expression. Both the
YAP1/TEAD and NICD/RBP] complexes inter-
act with the chromatin modifier SBNO1 to drive
the expression of Cdx2 (Rayon et al. 2014;
Watanabe et al. 2017). Recent work has demon-
strated that Notch signaling is activated hetero-
geneously between cells as early as the four-cell
stage and may account for the onset of Cdx2
expression (Menchero et al. 2019). The differen-
tial activation of Hippo signaling following cell
polarization and the establishment of inner and
outer cell populations may therefore act to rein-
force Cdx2 expression in outer cells correctly
positioned to become TE while preventing its
maintenance in inner cells. Apolar outer cells
may resolve their fate by polarizing (Anani
et al. 2014; Korotkevich et al. 2017; Zenker
et al. 2018) to activate Hippo signaling or
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internalizing (Plusa et al. 2005; Anani et al.
2014; Samarage et al. 2015) to repress Hippo
signaling and become ICM. The factors control-
ling whether these cells polarize or internalize
remain to be determined.

WHEN DOES CELL FATE COMMITMENT
OCCUR?

Although the first spatial segregation of cells
into inner and outer positions at the 16-cell stage
generally designates these cells as future ICM or
TE, respectively, their fate is not restricted until
subsequent stages of development. Conflicting
results were generated by early studies in which
inner and outer cells were dissociated from em-
bryos at varying stages of development and then
reaggregated to form chimeric embryos (Han-
dyside and Johnson 1978; Hogan and Tilly 1978;
Spindle 1978; Rossant and Lis 1979; Tarkowski
etal. 2010). However, a consensus appears to be
emerging that TE cell fate is largely committed
at the 32-cell stage (Suwinska et al. 2008; Posfai
et al. 2017), whereas cells of the ICM may be
specified at the 32-cell stage but their fate is
not committed until the 64-cell stage (Handy-
side and Johnson 1978; Rossant and Lis 1979;
Stephenson et al. 2010; Posfai et al. 2017). These
findings are consistent with analysis demon-
strating that single cells can be classified as TE
or ICM by the 32-cell stage and further catego-
rized into TE, EPI, or PE by the 64-cell stage on
the basis of their gene expression (Kurimoto
et al. 2006; Guo et al. 2010).

Unlike other organisms such as Caenorhab-
ditis elegans and Arabidopsis, the early mamma-
lian embryo does not follow a stereotyped pat-
tern of cell divisions, meaning that mechanisms
are required to correct errors in cell allocation
and enable robust development. Furthermore,
the mammalian embryo is highly regulative,
meaning that it can compensate for the loss or
gain of cells (Tarkowski 1959, 1961; Hillman
etal. 1972). The gradual nature of cell fate com-
mitment during mammalian preimplantation
development has been proposed to create an
early time window in which stochastic events
can drive correction of cell-specification errors
(Holmes et al. 2017; Chen et al. 2018; White

et al. 2018). As cell fates gradually become
more distinct, the threshold for transitioning
between ICM and TE increases and the effects
of noise diminish. Intriguingly, cell fate commit-
ment appears to be even more gradual in the
human embryo as TE cells are not yet commit-
ted even at the late blastocyst stage (De Paepe
et al. 2013).

WHEN DO THE FIRST DIFFERENCES ARISE
BETWEEN CELLS OF THE EMBRYO?

It has been proposed that differences between
cells of the embryo do not arise until cells are
spatially segregated at the 16-cell stage (Hiiragi
and Solter 2004; Alarcén and Marikawa 2005;
Motosugi et al. 2005). Initial studies analyzing
the expression of selected candidate genes found
no differences between early blastomeres (Die-
trich and Hiiragi 2007; Ralston and Rossant
2008; Guo et al. 2010; Wicklow et al. 2014).
However, mounting evidence suggests that het-
erogeneities that bias cells toward TE or ICM
may arise far earlier than the 16-cell stage. Sev-
eral lineage tracing studies revealed that cells of
the early embryo may not all contribute equally
to all lineages, and some cells display a fate bias
as early as the four-cell (Fujimori et al. 2003;
Piotrowska-Nitsche et al. 2005; Tabansky et al.
2013) or even two-cell stage (Casser et al. 2017;
Boiani et al. 2019), although this may be depen-
dent on genetic background (Alarcén and Mari-
kawa 2005). However, evidence is accumulating
for the introduction of molecular heterogene-
ities between cells of the early embryo from a
variety of sources (Fig. 3).

Partitioning Errors

The recent application of single-cell RNA se-
quencing technology to the preimplantation
embryo revealed that transcriptional differences
between cells of the embryo arise as early as the
first cleavage division (Biase et al. 2014; Piras
et al. 2014; Shi et al. 2015). At this stage, the
zygotic genome has not yet been activated, and
development is driven almost exclusively by ma-
ternally provided factors deposited in the egg
(Zhou and Dean 2015; Gao et al. 2017). During
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Figure 3. Molecular heterogeneities in the early preimplantation mouse embryo that influence cell fate. (A, top)
Schematic showing how multiplied partitioning errors at each cell division increase the heterogeneity between
cells. (Bottom) Graph demonstrating the amplification effect of a small bias in distribution of molecules between
cells during the first three cell division cycles. (B) Single-cell RNA-seq and cell-to-cell expression noise in two- to
eight-cell mouse and human (C) embryos. Each dot represents a comparison of two cells within the same
embryo. (A-C from Shi et al. 2015; adapted, with permission, from Company of Biologists © 2015.) (D)
Computational segmentation of a four-cell mouse embryo showing two pairs of sister cells, cell 1 and cell 2
(purple nuclei) and cell 3 and cell 4 (blue nuclei). (E,F) Within each sister pair there is one cell with a larger
fraction of Sox2-paGFP engaged in long-lived binding to the DNA (cell 1 and cell 3) and one cell with a smaller
fraction (cell 2 and cell 4). Inset in E highlights the differences between the autocorrelation curves in the time
window corresponding to DNA binding. (G) Immunostaining of a four-cell stage mouse embryo shows two cells
with higher levels of H3R26me2 and two cells with lower levels. (H) Individual data points for the long-lived
bound fractions of paGFP-Sox2 (vertical) and levels of H3R26me2 (horizontal) are shown on the same graph.
Cells with a larger long-lived bound fraction display higher levels of H3R26me2. (I) CARM1 knockdown
decreases inner cell numbers. At the two-cell stage, one cell was microinjected with memb-mCherry RNA
and Carml siRNAs. Images show computationally segmented 16-cell embryos. Fewer inner cells derive from
Carml siRNA-injected cells. Scale bar, 10 pm. (D-I from White et al. 2016; adapted, with permission, from
Elsevier © 2016.)
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cell division, these factors may be unevenly dis-
tributed into each daughter cell in a process
known as a partitioning error (Fig. 3A; Huh
and Paulsson 2011; Shi et al. 2015). Although
some of these errors may be subsequently cor-
rected, genes expressed at low levels are dispro-
portionately affected by partitioning errors (Shi
et al. 2015), leading to the establishment of dif-
ferential gene expression between cells. These
early heterogeneities may then be further ampli-
fied by transcriptional noise when transcription
of the zygotic genome is activated during the
two-cell stage (Piras et al. 2014) in mice or the
four- to eight-cell stage in humans (Fig. 3B,C;
Lee et al. 2014; Shi et al. 2015). Gene expression
noise can be introduced intrinsically through
transcriptional bursting or extrinsically by the
propagation of fluctuations in the expression
of one gene leading to fluctuations in the expres-
sion of downstream genes. Within the embryo,
feedback loops fine-tune initial differences in
gene expression to affect the ratio of opposing
lineage specifiers and bias cells toward alternate
fates (Shi et al. 2015).

Epigenetic Modifications and Transcription
Factor Binding

Some of the first differences demonstrated be-
tween cells of the early embryo occur at the level
of epigenetic modifications. At the four-cell
stage, an asymmetry between cells in the levels
of dimethylation of histone H3 at arginines 17
and 26 (H3R17 and H3R26) and in the expres-
sion of the chromatin modifiers CARMI1 (Tor-
res-Padilla et al. 2007) and PRDM14 (Burton
et al. 2013) becomes apparent. H3 methylation
levels are proposed to influence cell fate determi-
nation, as cells displaying higher levels of meth-
ylation at H3R17 and H3R26 at the four-cell
stage tend to contribute more progeny to the
ICM of the embryo (Torres-Padilla et al. 2007;
Burton etal. 2013). CARM1 overexpression leads
to increased H3R26 methylation and is associat-
ed with positioning of progeny within the ICM
and elevated expression of ICM fate markers
NANOG and SOX2 (Torres-Padilla et al. 2007).

Recently, it has become possible to probe
transcription factor dynamics in vivo using

photoactivatable fluorescence correlation spec-
troscopy (paFCS) techniques (Plachta et al.
2011; Kaur et al. 2013; Zhao et al. 2017). The
development of this technology has provided
insights into how differences in epigenetic mod-
ifications may contribute to lineage divergence.
Application of paFCS within the embryo re-
vealed that higher levels of CARMI1-mediated
histone H3 methylation promotes DNA binding
of the pluripotency-associated transcription fac-
tor SOX2, likely by increasing the accessibility of
SOX2 binding sites (Fig. 3D-I; White et al.
2016). This increased SOX2-DNA binding is
proposed to up-regulate SOX2-dependent gene
expression linked to pluripotency and bias cells
toward an embryonic fate (Goolam et al. 2016;
White et al. 2016). How the variability in histone
H3 methylation is first established at the four-
cell stage is not entirely clear, but it may depend
partly on the heterogenous expression of a long
noncoding RNA (IncRNA) called LincGET
(Wang et al. 2018). During the two- to four-
cell stage, LincGET is transiently and asymmet-
rically expressed. It can physically interact with
CARM1I, promoting its nuclear localization and
increasing histone methylation and chromatin
accessibility. Like CARMI, the overexpression of
LincGET in one cell at the two-cell stage biases
the injected cells toward an ICM fate. Knocking
down LincGET reduces the contribution of the
injected cells to the ICM, although the total
number of cells in the ICM remains unchanged
and embryos can still develop to the blastocyst
stage (Wang et al. 2018). An additional IncRNA
called Neat1 is also required for CARM1-depen-
dent histone methylation and promotion of
pluripotent cell fate (Hupalowska et al. 2018).
Neatl acts as a scaffold for nuclear foci called
paraspeckles, which recruit CARMI1 and are
heterogenous between cells of the four-cell
stage embryo in a manner that correlates with
H3R26 methylation levels. Disrupting para-
speckles leads to reduced levels of histone meth-
ylation, increased expression of Cdx2, a failure
to correctly specify the first cell lineages, and
developmental arrest (Hupalowska et al. 2018).
Although LincGET and Neatl appear to play
pivotal roles in the first cell lineage decision,
the factors underlying the initial differences in
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these IncRNAs between cells of the embryo re-
main to be determined.

Therefore, the evidence to date suggests that
the initial heterogeneities in histone modifica-
tions may originate from an interplay between
the first differences in gene expression (Biase et
al. 2014; Piras et al. 2014; Shi et al. 2015), varia-
tions in cell cleavage orientations (Zernicka-
Goetz et al. 2009), the asymmetric distribution
of IncRNAs such as LincGET (Wang et al.
2018) and Neat 1 (Hupalowska et al. 2018), and
potentially other unidentified factors.

REGULATORS OF PLURIPOTENCY IN THE
PREIMPLANTATION EMBRYO

For the past two decades it has been known that
the preimplantation stage of mouse development
is characterized by significant epigenetic changes
(Thompson et al. 1995; Stein and Schultz 2000;
Ma etal. 2001). Parental epigenetic marks inher-
ited by the zygote from the terminally differen-
tiated gametes must be extensively remodeled to
establish a zygotic epigenome required for sub-
sequent embryo development (Huang et al.
2015; Dahl et al. 2016; Eid et al. 2016). Recent
technological advances are now revealing how
changes in chromatin accessibility and three-di-
mensional (3D) organization, histone modifica-
tions, DNA methylation, and expression of ret-
rotransposons are dynamically regulated in the
early embryo (Xu and Xie 2018).

Global Chromatin Remodeling

At the most global level, changes in chromatin
structure and nuclear architecture control the
accessibility of key regulatory DNA sequences
to transcription factors and RNA polymerase
to regulate gene expression (Tsompana and
Buck 2014). The fundamental unit of chromatin
is the nucleosome, which is formed by wrapping
DNA around an octamer of histone proteins.
Posttranslational modifications of the histones
and incorporation of histone variants modulate
the degree of chromatin compaction or relaxa-
tion and recruit regulatory proteins (Schneider
and Grosschedl 2007; Bannister and Kouzarides
2011). Chromatin structure is very relaxed after

Specification of the First Mammalian Cell Lineages

fertilization in both the mouse and human zy-
gote (Wu et al. 2018) and then slowly compacts
throughout preimplantation development (Du
et al. 2017). The relaxed chromatin state is sup-
ported by the high mobility of histone proteins,
which gradually decreases throughout preim-
plantation development, in line with the idea
that increasing condensation of chromatin is as-
sociated with differentiation during develop-
ment (Boskovic et al. 2014; Ooga et al. 2016).

The most obvious features of such chroma-
tin reorganization in the early embryo can be
observed directly using microscopy to visualize
stained DNA (Borsos and Torres-Padilla 2016).
In zygotes and early two-cell-stage embryos,
most of the chromatin is uncompacted with
only a small amount of dense heterochromatin
surrounding the nuclear envelope or nucleoli
(Ahmed et al. 2010). Concurrent with activation
of transcription of the zygotic genome at the late
two-cell stage, the perinucleolar chromatin be-
gins to cluster into patches that dissociate from
the nucleoli during the four-cell stage and are
dispersed throughout the nucleus from the
eight-cell stage onward (Martin et al. 2006a;
Aguirre-Lavin et al. 2012). A similar global re-
organization of the chromatin also occurs in
embryos generated by parthenogenesis and so-
matic cell nuclear transfer (SCNT), suggesting
that it may be associated with reprogramming
(Martin et al. 2006b; Merico et al. 2007). Al-
though the purpose of the early perinucleolar
organization of heterochromatin and the molec-
ular mechanisms underlying its redistribution
are not fully understood, disrupting this subnu-
clear localization leads to serious defects in em-
bryo development (Jachowicz et al. 2013).

Histone Modifications

Following fertilization, the maternal and pa-
ternal genomes undergo extensive epigenetic
remodeling, and an asymmetry in histone mod-
ifications is established (Beaujean 2014). The
paternal genome becomes rapidly hyperacety-
lated on lysines 5, 8, 12, and 16 of histone H4
and lysines 9, 14, 18, and 27 of histone H3. Acet-
ylation of lysine neutralizes its positive charge
and is thought to promote an open chromatin
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structure and gene transcription (Clayton et al.
2006). Consistent with this, there is increased
transcriptional activation of the paternal ge-
nome at the one-cell stage (Aoki et al. 1997).
By contrast, the maternal genome is character-
ized by increased methylation on lysines 4, 9, 27,
36, and 64 of histone H3 and lysine 20 of histone
H4. Histone methylation does not alter the
binding of DNA to histones but can recruit reg-
ulatory proteins that act in association with
chromatin remodeling complexes (Bannister
and Kouzarides 2011; Musselman et al. 2012).
This asymmetry between the parental epige-
nomes can be detected until the four-cell stage
in the mouse embryo and has been proposed to
be necessary for early development, yet this re-
mains to be demonstrated (Beaujean 2014; Bur-
ton and Torres-Padilla 2014).

Although the initial asymmetries between
the parental genomes are gradually equalized
for most histone modifications following the
first cell cleavages, by the blastocyst stage a new
epigenetic asymmetry develops between the lin-
eages (Burton and Torres-Padilla 2010). The
cells of the ICM have globally higher levels of
methylation on both the DNA and histone H3,
as well as reduced phosphorylation of histone
H2A and H4 compared to the TE cells (Santos
et al. 2002; Erhardt et al. 2003; Sarmento et al.
2004). In addition, activating histone modifica-
tions are enriched on the Oct4 and Nanog pro-
moters and a repressive histone mark labels the
Cdx2 promoter in ICM cells compared with TE
cells, establishing a correlation between histone
methylation and gene expression in the blasto-
cyst (O’Neill et al. 2006). Studies demonstrating
that disrupting the methyltransferases responsi-
ble for the DNA and histone methylations in
mouse embryos results in more severe defects
in the embryonic tissues than the TE provide
further evidence of the functional importance
of these epigenetic asymmetries between the lin-
eages (Li et al. 1992; Okano et al. 1999; Tachi-
bana et al. 2002; Erhardt et al. 2003).

DNA Methylation

Beyond methylation of histones, genomic DNA
can also be methylated by a covalent modifica-

tion of cytosine (5mC) that occurs mainly on the
CpG dinucleotide and is often associated with
transcriptional repression (Bird 1986). 5mC is
established and maintained by the DNA meth-
yltransferases DNMT3A/B/L and DNMT], re-
spectively, and removed either passively by di-
lution during genome replication or actively by
Ten-eleven translocation (TET) proteins (Bhu-
tani et al. 2011; Jurkowska et al. 2011). Inhibiting
the activity of DNMT3A/B or TET3 in oocytes
leads to disruption of DNA methylation and em-
bryonic defects, confirming the importance of
regulating DNA methylation during early devel-
opment (Okano et al. 1999; Gu et al. 2011).

In human embryos, a wave of global DNA
demethylation occurs within 10-12 h after fertil-
ization and acts predominantly on the paternal
genome (Zhu et al. 2018). An additional two
waves of DNA demethylation occur during the
late zygote to two-cell stage and the eight-cell to
morula stage. Within this context of global de-
methylation, there are also two waves of focused
methylation occurring during the early male pro-
nuclear to mid-pronuclear stage and from the
four-cell to eight-cell stage. This de novo methyl-
ation occurs largely within retrotransposons such
as long interspersed nuclear elements (LINEs),
short interspersed nuclear elements (SINEs), and
long terminal repeats (LTRs) (Zhu et al. 2018).

Retrotransposon Activation

In both mouse and human embryos, there is
significant stage-specific activation of retro-
transposon transcription during preimplanta-
tion development that is proposed to contribute
to zygotic genome activation and cellular plas-
ticity (De Iaco et al. 2017; Jachowicz et al. 2017;
Rodriguez-Terrones and Torres-Padilla 2018).
In the mouse oocyte, LTRs are the most highly
expressed class of retrotransposon; however, by
the blastocyst stage, LINE-1 becomes the most
abundant retrotransposon transcript (Fadloun
et al. 2013). In addition to DNA methylation,
retrotransposon expression during preimplan-
tation development seems to be modulated by
varying levels of histone modifications, but the
molecular mechanisms regulating this remain
poorly understood (Fadloun et al. 2013).

212 Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a035634

© 2020 by Cold Spring Harbor Laboratory Press. All rights reserved.


http://cshlpress.com/default.tpl?action=full&src=pdf&--eqskudatarq=1278

This is a free sample of content from Stem Cells: From Biological Principles to Regenerative Medicine.
Click here for more information on how to buy the book.

Within the family of LTRs, endogenous ret-
roviruses (ERVs) are the most abundant ele-
ment, comprising ~8% of the human genome
(Lander et al. 2001). LTRs are able to act as
powerful promoters that drive the transcription
of nearby genes in the oocytes and embryos of
both mice and humans (Peaston et al. 2004).
This developmentally regulated LTR expression
may trigger sequential reprogramming of the
embryonic genome and is required for the ma-
ternal-to-zygotic transition in mouse embryos
(Huang et al. 2017b). ERVs can also encode
IncRNAs such as LincGET, which is essential
for embryo development (Wang et al. 2016)
and interacts with CARM1 to increase chroma-
tin accessibility and promote ICM cell fate
(Wang et al. 2018).

Temporal regulation of LINE-1 transcrip-
tion is required for mouse preimplantation de-
velopment as either premature silencing of
LINE-1 in the zygote or preventing LINE-1 si-
lencing after the two-cell stage leads to embryo
arrest (Jachowicz et al. 2017). The transcription-
al activation of LINE-1 promotes global remod-
eling of chromatin accessibility, suggesting that
retrotransposons contribute to shaping chroma-
tin architecture during early development.

Together, these studies are building a clearer
picture of the underlying mechanisms that drive
the progression from totipotency to pluripo-
tency and then on to the establishment of the
first cell lineages in the mammalian embryo.
The earliest event in this cascade is the reorga-
nization of chromatin architecture by epigenetic
modifications and activation of retrotransposon
transcription to establish a permissive chroma-
tin environment for cell fate choices. Against a
backdrop of ongoing chromatin remodeling,
differences in transcription factor binding and
gene expression gradually begin to emerge be-
tween cells. The first lineage decision appears to
be initiated by epigenetic regulation, but the cell
fate choice is only consolidated by transcription
factor expression later in development.

MOUSE PLURIPOTENT STEM CELLS

In 1981, pluripotent ESCs were first established
as nontransformed cell lines from the ICM of
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mouse blastocysts (Evans and Kaufman 1981;
Martin 1981). These cells were both self-renew-
ing and pluripotent as they could form
teratomas when implanted into an immuno-
compromised mouse and chimeric animals
when injected into a preimplantation mouse
embryo (Beddington and Robertson 1989). Al-
though ESCs retain the capacity to differentiate
into all three germ layers of the embryo, they
typically do not contribute to the extraembry-
onic membranes or placenta. Furthermore,
ESCs exhibit significant differences in epigenetic
regulation, gene expression, and cell signaling
when compared to their in vivo counterparts
within the ICM (Rugg-Gunn et al. 2010; Tang
et al. 2010; Munoz-Descalzo et al. 2015).

Pluripotent cells can be isolated until the
gastrulation stage of the mouse embryo; howev-
er, there is a temporal transition in their pluri-
potency state (Fig. 4). ESCs isolated from the
ICM of the early blastocyst are considered to
be in a state of “naive” pluripotency that retains
the potential to differentiate into the three germ
layers both in vitro and in vivo (Nichols and
Smith 2009). These cells can be derived from
the preimplantation EPI from ~E3.75 to E4.75
(Boroviak et al. 2014) and maintained in culture
through the addition of leukemia inhibitory fac-
tor (LIF) and small molecule inhibitors of MEK
and GSK3 kinases (2i/LIF conditions) (Ying
et al. 2008; Leitch et al. 2013).

By contrast, ESCs isolated from the EPI after
embryo implantation are considered to be in a
“primed” state of pluripotency that is fated, but
not committed, toward embryonic lineages and
differentiates into all three germ layers in vitro
but not when injected into the blastocyst
(Huang et al. 2012). These primed ESCs
are also referred to as EPI-derived stem cells
(EpiSCs), and they can be derived from the
mouse embryo from E5.5 to E7.5 (Brons et al.
2007; Tesar et al. 2007). The primed pluripotent
state is favored by culturing ESCs in FGF/ACTI-
VIN (Tesar et al. 2007). Although EpiSCs were
initially thought to correspond to postimplan-
tation EPI at E5.0-E6.0, their transcriptional
profile is most similar to gastrulating embryos
at E7.25-E8.0 (Kojima et al. 2014). EpiSCs
exhibit higher expression of genes related to
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Epiblast-derived

Expanded potential stem cells Trophoblast Extraembryonic stem cells
(EPSCs) stem cells endoderm (XEN) (EpiSCs)
(TSCs) “naive” cells “primed”

— DEPI

TE Pre

E1.5 E2.0 E2.5 E3.75-4.75 E5.5-7.5
Preimplantation Postimplantation

Figure 4. Derivation of embryonic stem cells (ESCs) from the mouse preimplantation embryo. Expanded
potential stem cells (EPSCs) can be derived from the mouse embryo at the two- to eight-cell stages and give
rise to both embryonic and extraembryonic lineages. Trophoblast stem cells (TSCs) and extraembryonic endo-
derm (XEN) stem cells can be isolated from the trophectoderm (TE) and primitive endoderm (PrE), respectively,
and give rise to only extraembryonic lineages. ESCs are derived from the epiblast (EPI) of the preimplantation
embryo and can give rise to all embryonic tissues. ESCs are thought to be in a naive state of pluripotency. Stem
cells derived from the postimplantation EPI are referred to as EPI-derived stem cells (EpiScs). These cells are
considered to be in a primed state of pluripotency that is fated, but not committed, toward specific embryonic
lineages.

adhesion, FGF/mitogen-activated protein kinase ~ and exhibit X-chromosome inactivation in fe-
(MAPK), TGF-B, and WNT signaling and dif-  male cells. Many of these parameters, however,
ferent methylation status of specific promoters  are influenced by the culture conditions and do
compared to the postimplantation EPI, likelyas ~ not necessarily reflect the in vivo pluripotent
a result of in vitro culture conditions (Kojima  state (Rugg-Gunn et al. 2010; Tang et al. 2010;

et al. 2014; Veillard et al. 2014). Veillard et al. 2014; Morgani et al. 2017; Schle-
Both ESCs and EpiSCs utilize the Oct4/  singer and Meshorer 2019).
Sox2/Nanog transcription factor circuit, but ESCs can be differentiated into EpiSCs in
they can be distinguished by differences in their ~ vitro, but the heterogenous differentiation and
growth factor requirements, morphology, me-  high levels of cell death accompanying this pro-
tabolism, epigenetic modifications, chromatin  cess suggest it is not a direct conversion (Guo
accessibility, transcriptomes, and activation sta- et al. 2009). In line with the temporal separation
tus of the X chromosome (Tesar et al. 2007;  of the naive and primed pluripotent states with-
Nichols and Smith 2009; Weinberger et al.  in the mouse embryo, an intermediate “forma-

2016; Schlesinger and Meshorer 2019). Naive  tive” state has been proposed to exist between
ESCs grow as dome-shaped colonies, express =~ ESCs and EpiSCs (Kalkan and Smith 2014;
the “naive” transcription factors KLF4, KLF2, Smith 2017). This transitional period may be
ESRRB, TFCP2L1, TBX3, and GBX2, utilize  required for cells to lose expression of naive
the Oct4 distal enhancer, have low levels of  pluripotency markers and undergo epigenetic
DNA methylation, and exhibit two active X  remodeling to gain competency to respond to
chromosomes in female cells. EpiSCs grow as a  lineage-specification cues. During the in vitro

monolayer, repress the expression of naive tran-  differentiation of mouse ESCs, a short-lived
scription factors, utilize the Oct4 proximal en-  population of cells was identified that had
hancer, have high levels of DNA methylation,  gained competence for differentiation into pri-
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mordial germ cells (Hayashi et al. 2011). These
cells were referred to as EPI-like cells (EpiLCs)
and were subsequently shown to display epige-
netic profiles that are intermediate between
ESCs and EpiSCs (Kurimoto et al. 2015; Shirane
et al. 2016; Kalkan et al. 2017). Whether these
EpiLCs can be reliably maintained as a pure
population in culture remains to be determined.

Optimizing the culture conditions and in-
hibiting the TGF-p pathway enabled the effi-
cient isolation of ESCs from individual cells of
embryos at the two- to eight-cell stage; however,
these cells were demonstrated to contribute only
to the embryonic germ layers in vivo (Hassani
et al. 2014). More recently, it was shown that by
inhibiting MAPKs, SRC and Hippo signaling
pathways, and poly-ADP-ribosylation regula-
tors, ESCs with an expanded developmental po-
tential (EPSCs) could be generated (Yang et al.
2017). EPSCs have similar transcriptomes and
DNA methylation characteristics to four- to
eight-cell-stage embryos and can give rise to
both embryonic and extraembryonic lineages
in vitro and in vivo. However, despite these mo-
lecular similarities, EPSCs still do not perfectly
recapitulate the transcriptome and epigenome
of the early embryo, again probably because of
the influence of in vitro culture conditions.

Multipotent stem cell lines have also been
established from mouse extraembryonic tissues.
TSCs were derived from the TE (Tanaka et al.
1998), and XEN cells were derived from the PrE
(Kunath et al. 2005). These stem cell lines are
able to be maintained indefinitely in vitro and
contribute to the expected extraembryonic line-
ages in vivo after transfer into mouse blastocysts.
TSC and XEN cells are separated from ESCs and
EpiSCs by robust DNA methylation and stable
repression of regulators of embryonic develop-
ment. It has been proposed that these epigenetic
modifications may act as a barrier that bifurcates
the embryonic and extraembryonic lineages
(Senner et al. 2012).

In addition to isolating stem cells from the
embryo, they can also be produced by SCNT, or
by forcing the expression of specific transcrip-
tion factors in somatic cells to produce induced
pluripotent stem cells (iPSCs). In SCNT, the nu-
cleus of a relatively differentiated cell is trans-
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ferred into an enucleated oocyte, allowing it
to be reprogrammed to totipotency by factors
within the oocyte cytoplasm. The donor cell’s
chromatin undergoes global chromatin remod-
eling with the replacement of somatic histones
by maternally stored histones and reprogram-
ming of histone modifications and DNA meth-
ylation to resemble the zygotic epigenome
(Nashun et al. 2011; Liu et al. 2016; Djekidel
et al. 2018; Matoba et al. 2018). SCNT is able
to produce entire cloned animals from a single
adult cell, demonstrating that under the right
conditions differentiated cells retain the poten-
tial for totipotency (Matoba and Zhang 2018).
This technique, however, remains extremely in-
efficient, indicating there are barriers to repro-
gramming. Some such barriers have already
been identified, including aberrant X-chromo-
some inactivation (Inoue et al. 2010), persis-
tence of repressive histone methylation (Matoba
et al. 2014), and loss of gene imprinting (Okae
et al. 2014). Creating strategies to overcome
these epigenetic barriers produces stem cells
that more closely resemble the zygote and im-
proves the development of cloned embryos (Ma-
toba et al. 2011, 2014; Liu et al. 2016).

iPSCs were first created through in vitro
reprogramming of fibroblast cells through the
ectopic expression of the OCT4, SOX2, MYC,
and KLF4 transcription factors (Takahashi and
Yamanaka 2006). Subsequently, many tran-
scription factors and small molecules have been
shown to facilitate reprogramming or even re-
place the original four “Yamanaka factors,” sug-
gesting that pluripotency can be attained through
multiple distinct routes (Buganim et al. 2014;
Theunissen and Jaenisch 2014). During their for-
mation, iPSCs do not undergo a complete global
demethylation process, and they may retain more
of the epigenetic signature of their somatic paren-
tal cell than ESCs or nuclear-transfer embryonic
stem cells (NT-ESCs) generated through SCNT
(Kim et al. 2010; Lister et al. 2011; Ohi et al.
2011), although some of these differences may
resolve over time in culture (Chin et al. 2010).

In addition to reprogramming cells into an
ESC-like pluripotent state, forced expression of
transcription factors can also direct induction of
multipotent stem cells resembling XEN cells and
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TSCs (Benchetrit et al. 2015; Kubaczka et al.
2015; Parenti et al. 2016). Somewhat unexpect-
edly, forced expression of the Yamanaka fac-
tors in fibroblasts was shown to direct cellular
reprogramming along two distinct pathways.
Although some cells are induced to become plu-
ripotent (iPSCs), others are reprogrammed into
multipotent endodermal stem cells (iIXEN) (Pa-
renti et al. 2016). These iXEN cells have not been
derived from iPSCs but represent an alternative
route of reprogramming that may be favored by
increased expression of GATA6. A different
complement of transcription factors is required
to reprogram cells into induced trophoblast
stem cells (iTSCs). The minimal transcription
factor set comprises GATA3, EOMES, and
TFAP2C but the speed or efficiency of repro-
gramming can be increased through the inclu-
sion of ETS2 (Kubaczka et al. 2015) or MYC,
respectively, (Benchetrit et al. 2015). Most re-
cently, it was demonstrated that expressing
the transcription factor combination GATA3,
EOMES, TFAP2C, MYC, and ESRRB can repro-
gram fibroblasts to produce iPSCs, iXENs, and
iTSCs concomitantly; however, only the iPSCs
and iTSCs were functionally demonstrated to
contribute to the expected lineages in vivo
(Benchetrit et al. 2019). Previous work has dem-
onstrated that iXEN cells can contribute to the
expected extraembryonic lineages in chimeric

E5.5 embryo Blastoid

blastocysts (Parenti et al. 2016), and together
with iPSCs and iTSCs, they provide the possi-
bility of generating synthetic embryos created
entirely from reprogrammed somatic cells.

STEM CELL-DERIVED ARTIFICIAL EMBRYOS

The ability of ESCs to recapitulate embryogen-
esis has been explored since shortly after they
were first discovered (Fig. 5). Initially, mouse
ESCs were aggregated into free-floating embry-
oid bodies (EBs) (Evans and Kaufman 1981;
Martin 1981) that can establish self-organizing
morphogen gradients (ten Berge et al. 2008).
Although these EBs develop anteroposterior po-
larity and form a primitive streak-like structure,
they form an internal cavity through an apopto-
tic process that does not occur during in vivo
development (Bedzhov and Zernicka-Goetz
2014). Culturing individual ESCs in a 3D matrix
in vitro instead enabled the reproduction of
in vivo lumen formation though a sequence of
cell polarization, rosette formation, and vesicu-
lar exocytosis (Bedzhov and Zernicka-Goetz
2014). Despite the remarkable ability of ESCs
to self-organize into structures that mimic cer-
tain features of embryogenesis, the developmen-
tal potential of these structures is limited by the
absence of extraembryonic tissues. Overlaying
EBs with TSCs allows the creation of blastoid

ETS embryo

ETX embryo

Figure 5. Stem cells models of the mouse embryo. Schematic shows comparison between E5.5 postimplantation
mouse embryo and stem cell-derived models. Suspension culture of embryonic stem cells (ESCs) and trophoblast
stem cells (TSCs) generates a blastoid that is morphologically similar to a blastocyst. Combining ESCs and TSCs
within a matrix allows formation of an ETS embryo with a cylindrical structure. The ETS embryo contains
embryonic and extraembryonic compartments but lacks primitive endoderm (PrE). Combining ESCs, TSCs, and
XEN cells within a matrix allows formation of an ETX-embryo that mostly closely replicates the tissue archi-
tecture of the in vivo embryo. (XEN) extraembryonic endoderm, (EPI) epiblast.
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structures that resemble the blastocyst and can
even initiate implantation when transferred to
pseudopregnant mice (Rivron et al. 2018).

Early postimplantation embryonic develop-
ment can be modeled by allowing ESCs and
TSCs to combine within a 3D matrix to produce
embryo-like structures called ETS embryos
(Harrison et al. 2017). These structures mimic
the formation of the proamniotic cavity and the
asymmetric induction of mesoderm and pri-
mordial germ cell markers but do not reproduce
key features of gastrulation. Incorporating XEN
cells with the ESCs and TSCs circumvents the
requirement to provide exogenous extracellular
matrix components and generates embryo-like
structures called ETX embryos. These embryo-
like formations proceed through the early stages
of gastrulation and can initiate implantation in
utero (Sozen et al. 2018; Zhang et al. 2019). Im-
provements in culture conditions are likely to
result in embryoid structures that reconstruct
developmental processes even more faithfully
in vitro. Finally, applying these approaches to
combinations of iPSCs, iTSCs, and iXEN cells
may enable the creation of artificial embryo-like
structures created entirely from somatic cells.
This would be of particular interest for research
into early human development in which the use
of embryonic cells is undesirable for ethical rea-
sons.

HUMAN PLURIPOTENT STEM CELLS

Pluripotent stem cell lines have been isolated
from human blastocysts (Thomson et al.
1998), induced from somatic cells, human-in-
duced pluripotent stem cells (hiPSCs) (Takaha-
shi et al. 2007), or created by SCNT using fetal
(Tachibana et al. 2013) or adult somatic cells
(Chung et al. 2014; Yamada et al. 2014). How-
ever, these lines differ significantly from mouse
ESCs in terms of morphology, differentiation,
and molecular characteristics (Rossant and
Tam 2017). Furthermore, although they have
been shown to differentiate into derivatives of
the three germ layers in vitro and form terato-
mas when injected into immunocompromised
mice (Thomson et al. 1998; Takahashi et al.
2007), it is not practical to test their contribution
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to human chimeric embryos, the gold standard
for demonstrating functional pluripotency. In-
terspecies chimeras have been made by inject-
ing human embryonic stem cells (hESCs) into
mouse blastocysts but it is unclear whether the
relatively low efficiency reflected a species bar-
rier or limited in vivo pluripotency of the hESCs
(James et al. 2006). The first hESC lines isolated
are generally considered to be in a primed state
of pluripotency, analogous to mouse EpiSCs
(Brons et al. 2007; Tesar et al. 2007) and tran-
scriptionally most similar to postimplantation
EPI (Nakamura et al. 2016). hESCs and mouse
EpiSCs share similar morphology, a dependency
on ACTIVIN/NODAL signaling to maintain
pluripotency (Xu et al. 2008), and X-chromo-
some inactivation (Silva et al. 2008) and are
more similar to each other in Oct4 promoter
occupancy than they are to mouse ESCs (Tesar
et al. 2007). However, the interpretation that
hESCs are equivalent to mouse EpiSCs has
been questioned because hESCs exhibit a range
of molecular characteristics that may reflect a
continuous spectrum of pluripotent states (Da-
vidson et al. 2015), and significant differences
between mouse and human preimplantation de-
velopment mean these comparisons may be of
limited value. Nevertheless, many attempts have
been made to capture hESCs in an earlier naive
state of pluripotency by converting primed
hESCs or hiPSCs, direct conversion of somatic
cells to pluripotency through transcription fac-
tor expression, or deriving new hESC lines from
human embryos at earlier developmental stages
(for review, see Ware 2017). Comparison of the
transcriptomes of these cells lines with single
cells of the human preimplantation embryo re-
vealed that the hESCs that most resemble the in
vivo naive pluripotent state are those that were
converted through transcription factor expres-
sion or chemical treatment (Takashima et al.
2014; Guo et al. 2017), derived from earlier em-
bryonic stages (Guo et al. 2016), or maintained
in a chemical cocktail containing five kinase in-
hibitors (Theunissen et al. 2014; Stirparo et al.
2018).

In addition to hESCs, human trophoblast
stem cells (hTSCs) have also been isolated
from human placenta and blastocysts, albeit
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with significantly different requirements for cul-
ture conditions than mouse TSCs (Okae et al.
2018). This may reflect the marked differences
in the transcription factor network and signal-
ing pathways underlying trophoblast formation
in mouse and humans. To date, human XEN cell
lines have not been successfully established;
however, once this is achieved, the tools will be
in place to substantially expand our understand-
ing ot human embryonic development by recon-
structing the earliest stages using stem cells in
vitro.

CONCLUDING REMARKS

The preimplantation mouse embryo has long
been used as a model system to study the earliest
developmental processes in mammals. For seven
decades, these embryos have been observed,
pulled apart, and reassembled with ever-evolving
technologies. In recent years, the establishment
of pluripotent stem cell lines has provided an
entirely new window into the events driving dif-
ferentiation of the first cell lineages. The possi-
bility to create large amounts of starting materi-
als, combined with advances in “omics” and
single-cell approaches, affords the opportunity
to analyze cellular, molecular, and epigenetic
features at vastly greater depth. Perhaps most
exciting is the capacity to assemble artificial
embryos entirely from stem cells. Not only can
these synthetic embryos replicate key features of
development, they are scalable and highly acces-
sible for manipulation and enable the study of
emergent properties within the developing sys-
tem. Further advances in in vitro culture con-
ditions will enable more accurate recapitulation
of developmental processes. Although currently
only in their infancy, these stem cell models of
embryonic development are likely to have a pro-
found impact on our understanding of how the
first cell lineages are established in the human
embryo.
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