
Preface

THE TITLE OF THIS BOOK COULD HAVE BEEN “The RNA World,
4th edition,” because it is very much the descendent

of three previous volumes published by Cold Spring
Harbor Laboratory (CSHL) Press. Instead, we’ve chosen
“RNA Worlds” to reflect the book’s dual purpose. On the
one hand, the volume covers the exciting diversity of
form and function of RNA in the present day world,
including RNA functions that have been discovered only
recently and are still emerging. On the other hand, the
volume maintains a major focus on the ancient RNA
world that is thought to have predated genetically encoded
proteins, DNA, and organisms we know about. As docu-
mented here, evidence for the reality of such a primordial
role for RNA is increasing, although challenges remain in
demonstrating model RNA-based replicases and in uncov-
ering feasible origins of precursors for RNA synthesis.
Nevertheless the plasticity of RNA stemming from its 2′

hydroxyl group and single-stranded nature, which permits
diverse folding in contrast to its storage molecule cousin,
DNA, continues to fascinate.

Even as we see health and economic benefits of biolog-
ical research, including RNA research, pursuit of intellec-
tual curiosity remains fundamentally important for the
human psyche as it was for explorers in previous eras.
Curiosity about our origins seems particularly deep-seated,
as reflected by the complex tapestry of explanations in the
religious heritages of diverse societies. But the scientific
explanations of life’s origins seem more ennobling to us
than, for instance, the idea of the original human female
being derived from a rib of a man.

The evidence is overwhelming that not only all humans
but all known life on earth had a common origin. This
would not be a surprise to Darwin who wrote in his “Origin
of Species ” book one and a half centuries ago that “prob-
ably all organic beings which have ever lived on this earth
have descended from some one primordial form”. To
what extent these conclusions have been providing a bul-
wark against the intolerance of fundamentalist beliefs is,
of course, part of a “well-worn” debate.

These considerations contribute to the broad interest in
theories and experiments concerning a primordial RNA
world. How best to focus interest on the key roles that
RNA played in the origins of life and continues to play in

present day species diversity and function? It is crucial to
continue the present research directions in biology to reveal
the bonanza yet in store and to encourage its distillation
and dissemination to a wider audience.

Even the pioneers of the RNA world concept did not
foresee that ribozymes had survived to the present day. Is
it conceivable that some RNA-based organisms currently
exist on our planet? After all, without ribosomes, such an
“organism” may be even smaller than organisms that rely
on protein synthesis. Such an organism might be uniquely
present in some minute deep-rock niches, and maybe in
environments that could not support predatory DNA-
based organisms. Such a ribo-organism might even have
evolved strategies to resist predation. While microorgan-
isms are now known to live deeper in the earth and in
more places than previously appreciated, the possibility of
RNA-based organisms whose ancestor arose after the gen-
eral advent of protein-based life does not seem to have been
widely considered. Search of stable shales with appropri-
ate pore sizes would likely yield new organisms with an
unquantifiable possibility of the discovery of RNA-based
organisms that would even require modification of the
statement above about common ancestry. As referenced
in the chapter by Benner and colleagues, this is just one
of the possibilities for radically different life on earth whose
potential existence merits investigation. Such a project
would be much cheaper than the quest to find life on
Mars and, if successful, just as wonderful scientifically.

Since the third edition of “The RNA World” book, a
key pioneer of RNA world studies and author in three pre-
vious editions of the book, Leslie Orgel, has passed away.
We will not forget his rigorous approach to origin-of-life
experiments and his warm humor.

We thank Richard Sever and John Inglis of CSHL
Press for wise advice and continuing support. It is a pleas-
ure also to acknowledge the care and understanding of
the project coordinator at CSHL, Inez Sialiano, in making
this book a reality, and Susan Roberts for help with the
cover graphics.
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SUMMARY

The chapters in this collection discuss not one RNAworld, but two. The first is the primordial
RNA world, a hypothetical era when RNA served as both information and function, both
genotype and phenotype. The second RNA world is that of today’s biological systems, where
RNA plays active roles in catalyzing biochemical reactions, in translating mRNA into proteins,
in regulating gene expression, and in the constant battle between infectious agents trying to
subvert host defense systems and host cells protecting themselves from infection. This second
RNAworld is not at all hypothetical, and although we do not have all the answers about how it
works, we have the tools to continue our interrogation of this world and refine our understand-
ing. The fun comes when we try to use our secure knowledge of the modern RNAworld to infer
what the primordial RNA world might have looked like.

Outline

1 The primordial RNA world

2 The contemporary RNA world

3 The world of RNA technology and
medical applications
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1 THE PRIMORDIAL RNA WORLD

The term “RNA world” was first coined by Gilbert (1986),
who was mainly interested in how catalytic RNA might
have given rise to the exon–intron structure of genes. But
the concept of RNA as a primordial molecule is older,
hypothesized by Crick (1968), Orgel (1968), and Woese
(1967). Noller subsequently provided evidence that riboso-
mal RNA is more important than ribosomal proteins for
the function of the ribosome, giving experimental support
to these earlier speculations (Noller and Chaires 1972; Nol-
ler 1993). The discovery of RNA catalysis (Kruger et al.
1982; Guerrier-Takada et al. 1983) provided a much firmer
basis for the plausibility of an RNAworld, and speculation
was rekindled. The ability to find a broad range of RNA cat-
alysts by selection of RNAs from large random-sequence
libraries (SELEX) (Ellington and Szostak 1990; Tuerk and
Gold 1990; Wright and Joyce 1997) fueled the enthusiasm,
and made it possible to conceive of a ribo-organism that
carried out complex metabolism (Benner et al. 1989).
The widely accepted order of events for the evolution of
an RNA world and from the RNA world to contemporary
biology is summarized in Figure 1.

Did an RNA world exist? Some of the most persuasive
arguments in favor of an RNA world are as follows. First,
RNA is both an informational molecule and a biocata-
lyst—both genotype and phenotype—whereas protein
has extremely limited ability to transmit information (as
with prions). Thus, RNA should be capable of replicating

itself, and indeed RNA can perform the sort of chemistry
required for RNA replication (Cech 1986). Second, it is
more parsimonious to conceive of a single type of molecule
replicating itself than to posit that two different molecules
(such as a nucleic acid and a protein capable of replicating
that nucleic acid) were synthesized by random chemical re-
actions in the same place at the same time. Third, the ribo-
some uses RNA catalysis to perform the key activity of
protein synthesis in all extant organisms, so it must have
done so in the Last Universal Common Ancestor (LUCA).
Fourth, other catalytic activities of RNA—activities that
RNA would need in an RNA world but that have not been
found in contemporary RNAs—are generally already
present in large combinatorial libraries of RNA sequences
and can be discovered by SELEX. Fifth, RNA clearly pre-
ceded DNA, because multiple enzymes are dedicated to
the biosynthesis of the ribonucleotide precursors of RNA,
whereas deoxyribonucleotide biosynthesis is derivative of
ribonucleotide synthesis, requiring only two additional en-
zymatic activities (thymidylate synthase and ribonucleo-
tide reductase.) Finally, a primordial RNA world has the
attractive feature of continuity; it could evolve into con-
temporary biology by the sort of events that are well prece-
dented, whereas it is unclear how a self-replicating system
based on completely unrelated chemistry could have been
supplanted by RNA.

Opinions vary, however, as to whether RNA comprised
the first autonomous self-replicating system or was a deriv-
ative of an earlier system. Benner et al. (this collection) and
Robertson and Joyce (this collection) are circumspect,
noting that the complexity and the chiral purity of modern
RNA create challenges for thinking about it arising de novo.
On the other hand, the recent finding that activated
pyrimidine ribonucleotides can be synthesized under plau-
sible prebiotic conditions (Powner et al. 2009) means that
it is premature to dismiss the RNA-first scenarios. Yarus
(this collection), an unabashed enthusiast for an RNA
world, argues for a closely related replicative precursor. In
vitro evolution studies directed towards an RNA replicase
ribozyme continue apace and are of great importance in es-
tablishing the biochemical plausibility of RNA-catalyzed
RNA replication (Johnston et al. 2001; Zaher and Unrau
2007; Lincoln and Joyce 2009; Shechner et al. 2009).

What might the first ribo-organism have looked like?
Schrum et al. (this collection) describe progress in achiev-
ing replication of simple nucleic acid-like polymers within
lipid envelopes, thereby constituting “protocells.” These li-
posomes can grow and upon agitation can divide to give
daughter protocells, carrying newly replicated nucleic
acids. Whether by lipids or other means, some form of en-
capsulation must have been a key early step in life. Encap-
sulation can protect the genome from degradation and
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Figure 1. An RNAworld model for the successive appearance of RNA,
proteins, and DNA during the evolution of life on Earth. Many iso-
lated mixtures of complex organic molecules failed to achieve self-
replication, and therefore died out (indicated by the arrows leading
to extinction.) The pathway that led to self-replicating RNA has
been preserved in its modern descendants. Multiple arrows to the
left of self-replicating RNA cover the likely self-replicating systems
that preceded RNA. Proteins large enough to self-fold and have use-
ful activities came about only after RNAwas available to catalyze pep-
tide ligation or amino acid polymerization, although amino acids
and short peptides were present in the mixtures at far left. DNA
took over the role of genome more recently, although still .1 billion
years ago. LUCA (Last Universal Common Ancestor) already had a
DNA genome and carried out biocatalysis using protein enzymes
as well as RNP enzymes (such as the ribosome) and ribozymes.

T.R. Cech

2 Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a006742

Copyright 2010 Cold Spring Harbor Laboratory Press. Not for distribution.  
Do not copy without written permission from Cold Spring Harbor Laboratory Press



predation, allows useful small molecules to be concentrated
for the cell’s use, and enables natural selection by ensuring
that the benefit of newly derived functions accrues to the
organism that stumbled across them.

2 THE CONTEMPORARY RNA WORLD

Today, RNA is the central molecule in gene expression in all
extant life, serving as the messenger. It is also central to bio-
catalysis, seen dramatically in the ribosome but also in ri-
bozymes and RNPzymes such as telomerase and the
signal recognition particle. More recently, its diverse roles
in regulation of (DNA) gene expression have been discov-
ered. It is useful to organize the discussion of contempo-
rary RNA activities as a spectrum, going from those
activities that are so RNA-centered that one could conceive
of them having operated in a primordial RNA world very
much as they do today, to those that rely more and more
on collaboration with proteins, to those RNAs that work
on DNA (Fig. 1).

What can RNA do by itself? It can bind small metabo-
lites (such as guanine, S-adenosylmethionine, and lysine)
with exquisite specificity, and then use this binding energy
to switch from one RNA structure to another. These ribo-
switches are common regulators of gene expression in
Gram-positive bacteria, and are also found in other organ-
isms including plants (Breaker [this collection]; Garst et al.
[this collection]). Furthermore, even very small RNAs
can act as ribozymes, accomplishing sequence-specific
self-cleavage (Ferré-D’Amaré and Scott [this collection]).
These self-cleavers can be easily re-engineered into multi-
ple-turnover RNA-cleaving enzymes, so it is straightfor-
ward to imagine that they could have served such a
function in a primordial RNA world. Larger ribozymes
can accomplish sophisticated RNA splicing reactions, as
described for group II introns by Lambowitz and Zimmerly
(this collection). There are a number of similarities, both
mechanistic and structural, between group II intron self-
splicing and spliceosomal splicing of mRNA introns, pro-
viding a plausible continuum from the RNA world to
post-protein contemporary biology.

Although RNA can perform many activities by itself, in
modern cells RNA more often works in concert with pro-
teins. The ribosome uses both RNA and protein to catalyze
message-encoded protein synthesis. Yet the heart of the
peptidyl transferase center is a ribozyme, and other fun-
damental activities such as mRNA start-site selection, co-
don–anticodon interaction, and decoding involve direct
RNA–RNA interactions, so the RNA world ancestry of
the ribosome is apparent (Moore and Steitz, Noller, Rama-
krishnan [all in this collection]). The same can be said of
the spliceosome (Will and Lührmann [this collection]).

Although a detectable level of catalysis of an isolated
step of RNA splicing can be achieved with pure snRNAs
(Valadkhan et al. 2009), the efficient and regulated splicing
of an entire genome’s collection of primary transcripts
requires the collaboration of almost 200 proteins and five
snRNAs in the modern spliceosome. Telomerase represents
another paradigm, as it includes a canonical protein
enzyme (TERT) that operates in intimate collaboration
with RNA (Blackburn and Collins [this collection])—
so it appears to derive from more recent evolution, after
protein enzymes and DNA chromosomes were well
established.

It seems likely that the most recently evolved functions
of RNA involve regulation of DNA—because there would
have been no DNA to regulate in a primordial RNA world!
Nevertheless, similar principles could have been active
in an RNA world. Gottesman and Storz (this collection)
describe RNA regulation in bacteria, which occurs through
a range of mechanisms ranging from the simple “antisense
RNA” principle of inhibition by complementary base-
pairing to RNA–protein interactions. In eukaryotes, sev-
eral classes of noncoding RNAs perform diverse functions
in the regulation of gene expression. Small double-stranded
RNAs (for example, the 21-bp small-interfering RNAs and
the microRNAs) regulate the stability or the translatability
of mRNAs (Joshua-Tor and Hannon [this collection]).
Here the RNA provides such a simple function—recogni-
tion of complementary sequences on the mRNA target—
that the authors choose to organize their discussion ac-
cording to subfamilies of the Argonaute proteins that
bind the small RNAs. The RNA interference (RNAi) path-
way is involved not only in mRNA-level events, but also in
the regulation of chromatin structure as described by Volpe
and Martienssen (this collection). Maintenance of the
highly condensed heterochromatin found at chromosome
centromeres depends on this RNAi activity. Finally, long
noncoding RNAs usually acting in cis (on the chromosome
or the local region where they were synthesized) can turn
off gene expression by attracting proteins that modify
chromatin structure. The effect can spread to an entire
chromosome, in the case of the Xist RNA that condenses
one of the two X chromosomes in female mammals and
thereby gives gene dosage compensation (Lee [this collec-
tion]). In other cases, the effect is more local, affecting tran-
scription of a single gene or a group of genes (Wang et al.
[this collection]). These recently discovered activities of
RNA show that the RNA world never stopped (and has
not stopped) evolving.

Diverse viral encoded ncRNAs are used as weapons
either to circumvent host defense or otherwise manipulate
host cellular machinery for their own purposes (Steitz et al.
[this collection]). Although several of the classes of viral
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ncRNAs are counterparts of cellular equivalents, some are
distinctive. Bacteria have evolved the CRISPR (Clustered
Regularly Interspaced Short Palindromic Repeat) defense
system to protect themselves from alien DNA such as that
injected by bacteriophages (Wang et al. [this collection]).
Here, the information identifying the invading genome is
stored in the form of DNA, but it is subsequently converted
to small guide RNAs that recognize and interfere with sub-
sequent invaders. Although there is a clear analogy between
CRISPR and eukaryotic RNAi, the two systems appear to
have evolved completely independently.

3 THE WORLD OF RNA TECHNOLOGY AND
MEDICAL APPLICATIONS

I oversimplified when I said that there were two RNA
worlds. There is in fact a third—the world of RNA research
and development. This third RNA world should be of
special interest to students, because this RNA world offers
opportunities for gainful employment!

RNA function depends on its structure—it is the seem-
ingly limitless variety of structures that allows so many
diverse functions. We can now predict RNA secondary
structure quite well (Mathews et al. [this collection]) and
see much progress on predicting 3D structure (Westhof
et al. [this collection]). Remarkably, we can now watch
molecules of RNA fold and unfold and switch from one
state to another in “single-molecule experiments” (Tinoco
et al. [this collection]). We can use double-stranded RNAs
and the intrinsic RNAi machinery present in organisms to
do genome-wide knock-downs of gene function (Perrimon
et al. [this collection]). Finally, RNA science is poised to
make an impact on medicine. For example, aptamers
can monitor the concentrations of many of the proteins
in human serum, which has diagnostic applications be-
cause the presence of many proteins is correlated with
health and disease (Gold et al. [this collection]). In addi-
tion, both microRNAs and antisense nucleic acids that
inhibit miRNAs have pharmaceutical potential, which is
under development in numerous biotechnology and phar-
maceutical companies.

Thus, the authors of this collection take us on a fasci-
nating journey through three RNA worlds. The primordial
RNA world (ca. four billion years ago) relied on the dual
ability of RNA to serve as both informational molecule
andbiocatalyst, providing aself-replicatingsystem. Coupled
with other ribozymes that carried out complex metabolism
and encapsulated in some sort of envelope, self-replicating
RNA constituted an early life form that was the ancestor of
contemporary biology. The second RNA world is that of
contemporary biology, where RNA occasionally acts by it-
self (ribozymes and riboswitches) but more often acts in

concert with proteins. The ribosome and the spliceosome
still “remember” their ribozyme heritage, whereas telomer-
ase and the signal recognition particle have moved on to
incorporate canonical protein enzymes. The RNA interfer-
ence system and CRISPR have gone further, reducing the
role of the RNA to that of a simple guide sequence. Finally,
the third RNAworld—that of RNA technology and medical
applications—is a baby compared to even the second RNA
world, because it arose only in the past half-century.
Although this last RNAworld is only perhaps one millionth
of one per cent as old as the primordial RNA world, it is a
vibrant community, and my co-editors John Atkins and
Ray Gesteland and I feel privileged to be part of it.
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